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1. Introduction. The set of integers represented as the sum of three cubes of
natural numbers is widely expected to have positive density (see Hooley [7] for
a discussion of this topic). Over the past six decades or so, the pursuit of an
acceptable approximation to the latter statement has spawned much of the progress
achieved in the theory of the Hardy-Littlewood method, so far as its application to
Waring’s problem for smaller exponents is concerned. Write R(N) for the number
of positive integers not exceeding N which are the sum of three cubes of natural
numbers. Then by exploiting methods based on the use of diminishing ranges,
Davenport [4] established that R(N) � N13/15−ε, a bound which Davenport [5]
himself subsequently improved to obtain R(N) � N47/54−ε. It remained until the
work of Vaughan for further improvement to be achieved. First, in work which may
be considered as a natural development of Davenport’s methods, Vaughan [11, 12]
obtained the lower bound R(N) � N19/21−ε. Later, as a consequence of his “new
iterative method” involving the use of exponential sums over smooth numbers,
Vaughan [13] obtained the sharper bound R(N) � N11/12−ε (see also Ringrose
[10] for an intermediate estimate). Most recently, the author has developed an
extension of the new iterative method in which fractional moments of exponential
sums over smooth numbers are estimated non-trivially, and thereby (see Corollary
B to Theorem 1.2 of Wooley [15]) has obtained the lower bound

R(N) � N1−ξ/3−ε,

where ξ denotes the positive root of the polynomial ξ3 + 16ξ2 + 28ξ − 8, so that
ξ = 0.24956813 . . . . The purpose of the present paper is to obtain a further modest
sharpening in the lower bound for R(N).

Theorem 1.1. For each positive number ε, one has

R(N) � Nα−ε,

where α = (166−
√

2833)/123.
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For comparison, one has the lower bound α > 0.916862, whereas 1 − ξ/3 <
0.916811. Although this improvement in the lower bound for R(N) may be the
smallest in history, it is to be hoped that the progress described herein may at
least stimulate further progress in this stubborn problem. We remark that, subject
to the truth of an unproved Riemann Hypothesis concerning certain Hasse-Weil
L-functions, one has the conditional estimate R(N) � N1−ε due to Hooley [8, 9]
and Heath-Brown [6]. Unfortunately, the latter L-functions are not yet known to
possess an analytic continuation inside the critical strip, and thus the resolution of
a Riemann Hypothesis seems a distant prospect.

We establish Theorem 1.1 in routine manner by exploiting a mean value estimate
of independent interest. In order to discuss this estimate, we require some notation.
Denote by A(P,R) the set of R-smooth numbers of size at most P , that is

A(P,R) = {n ∈ [1, P ] ∩ Z : p|n and p prime ⇒ p ≤ R}. (1.1)

As usual, we write e(z) for e2πiz, and define the smooth Weyl sum f(α) = f(α;P,R)
by

f(α;P,R) =
∑

x∈A(P,R)

e(αx3), (1.2)

and the classical Weyl sum F (α) = F (α;P ) by

F (α;P ) =
∑

1≤x≤P

e(αx3). (1.3)

In §2 we establish the estimates contained in the following theorem.

Theorem 1.2. For each ε > 0, there exists a positive number η = η(ε) such that
whenever R ≤ P η, one has∫ 1

0

∣∣F (α;P )2f(α;P,R)4
∣∣ dα� P 3+δ6+ε (1.4)

and ∫ 1

0

|f(α;P,R)|5dα� P
5
2+δ5+ε, (1.5)

where

δ6 =
√

2833− 43
41

and δ5 =
√

2833− 49
48

. (1.6)

For comparison, Theorem 1.2 and Lemma 5.1 of Wooley [15] establish similar
estimates to those of Theorem 1.2 with δ6 = ξ and δ5 = 3ξ/(8 + 2ξ), where ξ is the
number defined in the opening paragraph. Earlier work of Vaughan [13, Theorem
4.4] had established the upper bound∫ 1

0

|f(α;P,R)|6dα� P 13/4+ε,
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and this yields the estimate (1.5) with δ5 = 1/8 via Schwarz’s inequality. It may
be useful to record that the values δ5 and δ6 recorded in (1.6) satisfy

δ5 = 0.08804028 . . . and δ6 = 0.24941301 . . . .

As will be familiar to experts, the upper bound (1.4) of Theorem 1.2 has im-
mediate consequences for estimates concerning the exceptional set for sums of four
cubes. Let E(X) denote the number of natural numbers not exceeding X which are
not the sum of four cubes of natual numbers. Then by following the argument of
Brüdern [2], one readily establishes the estimate contained in the following theorem.
We provide no further discussion of the proof of this theorem.

Theorem 1.3. For each positive number ε, one has

E(X) � X1−β+ε,

where β = (422− 6
√

2833)/861.

The aforementioned work of Brüdern [2] yields a similar conclusion with β =
5/42, this having been improved in Corollary B to Theorem 1.2 of Wooley [15] to
β = (4 − 6ξ)/21 < 0.119172. For comparison, the value of β recorded in Theorem
1.3 satisfies β > 0.119215.

We establish the mean value estimates of Theorem 1.2 by means of the iterative
method described in Wooley [15]. The key feature of the latter method is that it
estimates non-trivially the fractional moments of smooth Weyl sums, and in the
proof of Theorem 1.2 it is the fifth moment which plays the leading role. For the
most part we follow the treatment applied in §5 of Wooley [15], but now we exploit
sharper major arc estimates following the differencing operation in order to permit
greater use to be made of the fifth moment. The sharper estimates presented in
Theorem 1.2 lead to small improvements in all small moments of cubic smooth
Weyl sums, and this topic we briefly discuss at the end of §2.

We use ε and η to denote sufficiently small positive numbers, and P to denote
a large positive number depending at most on ε and η. The implicit constants in
Vinogradov’s well-known notation, � and �, will depend at most on ε and η. We
adopt the following convention concerning the numbers ε and R. Whenever ε or R
appear in a statement, either implicitly or explicitly, we assert that for each ε > 0,
there exists a positive number η(ε) such that the statement holds whenever R ≤ P η.
Note that the “value” of ε, and η, may change from statement to statement, and
hence also the dependency of implicit constants on ε and η. We observe that since
our iterative methods will involve only a finite number of statements (depending at
most on ε), there is no danger of losing control of implicit constants through the
successive changes in our arguments.

2. The proof of Theorem 1.2. Before establishing the mean value estimates
contained in Theorem 1.2, we must recall some notation from Wooley [15]. When
s is a positive real number, define the mean value Us(P,R) by

Us(P,R) =
∫ 1

0

|f(α;P,R)|sdα.
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We say that an exponent µs is permissible whenever the exponent has the property
that, with the notational conventions defined above, one has Us(P,R) � Pµs+ε. It
follows easily as in [15] that for each s, a permissible exponent µs exists satisfying
s/2 ≤ µs ≤ s. It is convenient to refer to an exponent δs as an associated exponent
when µs = s/2 + δs is permissible.

We provide associated exponents δ5 by applying Lemma 5.1 of [15], which we
record below in the following lemma.

Lemma 2.1. Suppose that δ6 is an associated exponent. Then the exponent δ5 =
3δ6/(8 + 2δ6) is associated.

It is in the analysis of the associated exponents δ6 that our treatment differs
from that of Wooley [15].

Lemma 2.2. Suppose that δ5 and δ6 are associated exponents. Then the exponent
δ′6 is associated, where

δ′6 = 2 max
{

3 + 8δ5
29 + 8δ5

,
δ6

4 + δ6

}
. (2.1)

Moreover, one has ∫ 1

0

∣∣F (α;P )2f(α;P,R)4
∣∣ dα� P 3+δ′

6+ε. (2.2)

Proof. Initially, we follow the treatment of Lemma 5.2 of Wooley [15]. Let φ be a
real number with 0 ≤ φ ≤ 1/7, and write

M = Pφ, H = PM−3 and Q = PM−1.

Next define the exponential sum

F1(α) =
∑

1≤z≤2P

∑
1≤h≤H

∑
M<m≤MR

e(2αh(3z2 + h2m6)),

and define the mean value I(B), when B ⊆ [0, 1), by

I(B) =
∫
B

∣∣F1(α)f(α; 2Q,R)4
∣∣ dα. (2.3)

Then the inequality (5.3) of [15] yields the estimate∫ 1

0

∣∣F (α;P )2f(α;P,R)4
∣∣ dα� P εM3

(
PMQ2 + I([0, 1))

)
. (2.4)

On considering the underlying diophantine equation, the integral on the left hand
side of (2.4) provides an upper bound for U6(P,R), and hence the estimate (2.2)
establishes that the exponent δ′6 defined in (2.1) is associated.
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Let m denote the set of points α in [0, 1) with the property that whenever there
exist a ∈ Z and q ∈ N with (a, q) = 1 and |qα − a| ≤ PQ−3, then one has q > P .
Further, let M = [0, 1) \ m. We aim to apply the Hardy-Littlewood method to
estimate the mean value I([0, 1)), and from this the desired upper bound (2.2) will
follow.

We begin by estimating the contribution of the minor arcs m to I([0, 1)). By
applying Hölder’s inequality to (2.3), we obtain

I(m) � J1/5U
4/5
5 , (2.5)

where

J =
∫

m

|F1(α)|5dα and U5 =
∫ 1

0

|f(α; 2Q,R)|5dα. (2.6)

But by inequality (5.4) of [15] together with the argument of the proof of Lemma
3.7 of Vaughan [13], one has

J ≤
(

sup
α∈m

|F1(α)|
)3

∫ 1

0

|F1(α)|2dα� P ε
(
(PM)1/2H

)3

(PMH).

Also, on recalling that δ5 is an associated exponent, we have

U5 � Q
5
2+δ5+ε.

Thus it follows from (2.5) that

I(m) � P ε(PM)
1
2H

4
5Q2+ 4

5 δ5 . (2.7)

In order to provide a satisfactory estimate for I(M), we investigate an auxiliary
mean value. Observe that M is the union over a ∈ Z and q ∈ N satisfying (a, q) = 1
and 0 ≤ a ≤ q ≤ P , of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ PQ−3}.

Define the function ∆(α) for α ∈ [0, 1) by

∆(α) =
{

(q +Q3|qα− a|)−1, when α ∈ M(q, a) ⊆ M,
0, otherwise,

and define the mean value

K =
∫

M

∆(α)|f(α; 2Q,R)|2dα. (2.8)

Plainly,
|f(α; 2Q,R)|2 =

∑
l∈Z

ψ(l)e(lα),
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where ψ(l) denotes the number of solutions of the equation z3
1−z3

2 = l with z1, z2 ∈
A(2Q,R). One evidently has

ψ(0) � Q and
∑
l∈Z

ψ(l) = f(0; 2Q,R)2 � Q2.

Applying the latter estimates within Lemma 2 of Brüdern [1], we deduce that∫
M

∆(α)|f(α; 2Q,R)|2dα� Qε−3(PQ+Q2) � PQε−2. (2.9)

Next we note that by Lemmata 3.1 and 3.4 of Vaughan [13], when α ∈ M one
has

F1(α) � P ε(PHM∆(α)2/3 + PHM1/2∆(α)1/2).

Then by combining (2.3) with (2.8) via Hölder’s inequality, we obtain

I(M) �P 1+εHMK2/3
(∫ 1

0

|f(α; 2Q,R)|8dα
)1/3

+ P 1+εHM1/2K1/2
(∫ 1

0

|f(α; 2Q,R)|6dα
)1/2

.

Consequently, on recalling Hua’s Lemma (see Lemma 2.5 of Vaughan [14]), and
making use of (2.9) and our hypothesis that δ6 is an associated exponent, we deduce
that

I(M) � P 1+εHM(PQ−2)2/3(Q5)1/3 + P 1+εHM1/2(PQ−2)1/2(Q3+δ6)1/2.

On recalling (2.7) and (2.4), we thus obtain the bound∫ 1

0

|F (α;P )2f(α;P,R)4|dα� P εM3(PMQ2 + I(M) + I(m))

� P εM3Q2(Φ1 + Φ2 + Φ3 + Φ4),
(2.10)

where
Φ1 = PM, Φ2 = (PM)

1
2H

4
5Q

4
5 δ5 ,

Φ3 = P 5/3HMQ−5/3, Φ4 = P 3/2HM1/2Q(δ6−3)/2.

In view of the definitions of M , H and Q, however, one finds that Φ3 = PM−1/3 ≤
Φ1, that whenever

φ ≥ 3 + 8δ5
29 + 8δ5

,

one has Φ1 ≥ Φ2, and that whenever φ ≥ δ6/(4 + δ6), one has Φ1 ≥ Φ4. Thus, on
setting

φ = max
{

3 + 8δ5
29 + 8δ5

,
δ6

4 + δ6

}
, (2.11)
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we deduce from (2.10) that∫ 1

0

|F (α;P )2f(α;P,R)4|dα� P 1+εM4Q2 = P 3+2φ+ε,

whence the desired estimate (2.2) follows immediately from (2.11).

Theorem 1.2 follows by applying Lemmata 2.1 and 2.2 iteratively, as we now
demonstrate.

The proof of Theorem 1.2. Suppose that δt (t = 5, 6) are associated exponents.
Then by applying Lemmata 2.1 and 2.2 repeatedly, we obtain a sequence of such
associated exponents, δ(r)t (t = 5, 6), with the property that δ(0)t = δt and for r ≥ 0,

δ
(r+1)
5 =

3δ(r)6

8 + 2δ(r)6

and δ
(r+1)
6 = 2max

{
3 + 8δ(r)5

29 + 8δ(r)5

,
δ
(r)
6

4 + δ
(r)
6

}
. (2.12)

If the second expression in the maximum defines δ(r+1)
6 in (2.12) for infinitely many

values of r, then plainly δ
(r)
6 −→ 0 as r −→ ∞, and likewise for δ(r)5 . We may

therefore suppose that for all sufficiently large r, it is the first expression which
defines δ(r+1)

6 in (2.12). Then taking the limit as r −→ ∞, we deduce that the
exponents δ∗5 and δ∗6 are associated, where δ∗5 and δ∗6 satisfy the equations

δ∗5 =
3δ∗6

8 + 2δ∗6
and δ∗6 = 2

3 + 8δ∗5
29 + 8δ∗5

.

It follows that δ∗6 is the smaller zero of the polynomial 41ξ2 + 86ξ − 24, whence

δ∗6 =
√

2833− 43
41

and δ∗5 =
√

2833− 49
48

.

The estimates (1.4)-(1.6) now follow directly from Lemmata 2.1 and 2.2.

Theorem 1.1 follows immediately from Theorem 1.2 by means of an application of
Cauchy’s inequality. Since this argument is so often suppressed, we briefly describe
the details for the benefit of inexperienced readers. We take P = N1/3, and R = Nη

with η = η(ε) a sufficiently small positive number. Then on writing r(n) for the
number of representations of the natural number n in the shape n = x3 + y3 + z3,
with 1 ≤ x ≤ P and y, z ∈ A(P,R), one finds that

R(N) ≥
∑

1≤n≤N
r(n)>0

1,
∑

1≤n≤N

r(n) � P 3,

and ∑
1≤n≤N

r(n)2 ≤
∫ 1

0

|F (α;P )2f(α;P,R)4|dα� P 3+δ6+ε,
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where δ6 is the real number defined in (1.6). Thus, since by Cauchy’s inequality,( ∑
1≤n≤N

r(n)
)2

≤
( ∑

1≤n≤N
r(n)>0

1
)( ∑

1≤n≤N

r(n)2
)
,

we deduce that
R(N) � (P 3+δ6+ε)−1(P 3)2 = N1−(δ6+ε)/3.

The conclusion of Theorem 1.1 is thus an immediate corollary of the estimate (1.4)
of Theorem 1.2.

We conclude with a brief discussion of permissible exponents µs for 4 < s < 8.
This topic is investigated in detail in §4 of Brüdern and Wooley [3]. One finds, in
particular, that methods currently available to us yield permissible exponents µs

for 5 < s < 6 which simply interpolate linearly between µ5 and µ6, and indeed a
similar situation occurs for 6 < s < 6.5. The explanation for this phenomenon is
clear. One may provide bounds for µ6 by means of the mean value estimate (2.4),
and thus the exponential sum F1(α), involving variables running over complete
intervals, plays a prominent role. When s is not an even integer, the relevant mean
values involve an analogue of F1(α) in which certain linear combinations of variables
are restricted to be smooth, and thus minor arc bounds for this analogue of F1(α)
are too weak to be of use. It thus transpires that the method of estimating µs

when s = 6 is so much more efficient than that available for neighbouring values
of s, that convexity arguments triumph close to s = 6. This phenomenon dictates
that when estimating the mean value I(m) defined by (2.3), applications of Hölder’s
inequality which exploit mean values Ut(P,R) should yield exponents µ6 which are
local extrema when t = 5, 6 and 6.5. The only obstacles to such a conclusion
arise when estimating the contribution of the major arcs in the Hardy-Littlewood
dissection, but in the present situation such obstacles have been removed. Thus we
believe that the conclusion of Theorem 1.2 is the best available within the compass
of our methods.

As noted in the introduction, the estimates of Theorem 1.2 may be recycled
within §4 of Brüdern and Wooley [3]. However, the new permissible exponents
obtained for 4 < s ≤ 7.365 improve on those of §4 of [3] only in the 4th, 5th or 6th
decimal places, and thus we avoid further discussion of this matter herein.
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